Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity1[OPEN]
نویسندگان
چکیده
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundlesheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco (Nicotiana tabacum) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher Vmax and Km values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO2 is released by the active specialized metabolism.
منابع مشابه
Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity.
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sh...
متن کاملElectron Transport through photosystem I Stimulates Light Activation of Ribulose Bisphosphate Carboxylase/Oxygenase (Rubisco) by Rubisco Activase.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO(2) (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport...
متن کاملHeterologous Expression of Methylketone Synthase1 and Methylketone Synthase2 Leads to Production of Methylketones andMyristic Acid in Transgenic Plants1[W][OPEN]
Some plants produce methylketones as potent defense compounds against various insects. Wild tomato (Solanum habrochaites), a relative of the cultivated tomato (Solanum lycopersicum), synthesizes large amounts of 2-methylketones in its glandular trichomes, but cultivated tomato trichomes contain little or no methylketones. Two enzymes, Solanum habrochaites methylketone synthase1 (ShMKS1) and ShM...
متن کاملHeterologous expression of methylketone synthase1 and methylketone synthase2 leads to production of methylketones and myristic acid in transgenic plants.
Some plants produce methylketones as potent defense compounds against various insects. Wild tomato (Solanum habrochaites), a relative of the cultivated tomato (Solanum lycopersicum), synthesizes large amounts of 2-methylketones in its glandular trichomes, but cultivated tomato trichomes contain little or no methylketones. Two enzymes, Solanum habrochaites methylketone synthase1 (ShMKS1) and ShM...
متن کاملImproved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry
Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017